МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ВЕТЕРИНАРНОЙ МЕДИЦИНЫ

Кафедра Естественнонаучных дисциплин

Аннотация рабочей программы дисциплины **Б1.О.13 ФИЗИКА**

Направление подготовки: 35.03.08 Водные биоресурсы и аквакультура

Профиль: Рыбоводство пресноводное

Уровень высшего образования — **бакалавриат** Квалификация — **бакалавр**

Форма обучения - очная

1. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП

1. 1.1. Цель и задачи дисциплины

Бакалавр по направлению 35.03.08 Водные биоресурсы и аквакультура должен быть подготовлен к решению задач профессиональной деятельности следующих типов: производственно-технологический, научно-исследовательский.

Цель дисциплины: формирование теоретических знаний, практических умений и навыков в области физики, необходимых для обеспечения экологической безопасности рыболовства и продукции аквакультуры, в том числе и оценки экологического состояния естественных и искусственных водоемов в соответствии с формируемыми компетенциями.

Задачи дисциплины:

- 1. Изучение физических явлений и законов и границ их применимости; знакомство с основными физическими величинами, их определениями, физическим смыслом, способами и единицами измерения.
- 2. Приобретение навыков работы с приборами и оборудованием физической лаборатории; навыков использования различных методик физических измерений и обработки экспериментальных данных; навыков проведения адекватного физического моделирования.
- 3. Применение в своей практической деятельности знаний по физике для решения теоретических и производственных задач.

2. 1.2. Компетенции и индикаторы их достижений

ОПК-1 Способен решать типовые задачи профессиональной деятельности на основе знаний основных законов математических, естественнонаучных и общепрофессиональных дисциплин с применением информационно-коммуникационных технологий

Код и наименование	Формируемые ЗУН	
индикатора достижения		1 17
компетенции		
ИД-1. ОПК-1	знания	Обучающийся должен знать основные физические явления, законы и
Решает типовые задачи		границы их применимости; основные физические величины и
профессиональной		физические константы, их определения, физический смысл, способы
деятельности на основе		и единицы их измерения; фундаментальные физические опыты и их
знаний основных законов		роль в развитии науки; назначение и принципы действия важнейших
математических,		физических приборов (Б1.О.13, ОПК-1 – 3.1)
естественнонаучных	умения	Обучающийся должен уметь объяснить основные наблюдаемые
дисциплин с		природные и техногенные явления и эффекты с позиции
применением		фундаментальных физических взаимодействий; указать, какие
информационно-		законы описывают данное явление или эффект; истолковывать
коммуникационных		смысл физических величин и понятий; работать с приборами и
технологий		оборудованием физической лаборатории, использовать методы
		адекватного физического моделирования для решения типовых
		задач профессиональной деятельности (Б1.О.13, ОПК-1 - У.1)
	навыки	Обучающийся должен владеть навыками использования основных
		общефизических законов и принципов для решения типовых задач
		профессиональной деятельности; навыками применения основных
		методов физико-математического анализа для решения типовых
		задач профессиональной деятельности; навыками правильной
		эксплуатации основных приборов и оборудования физической
		лаборатории; обработки и интерпретирования результатов
		эксперимента (Б1.О.13, ОПК-1 - Н.1)

3. 2. Место дисциплины в структуре ОПОП

Дисциплина «Физика» относится к обязательной части основной профессиональной образовательной программы бакалавриата (Б1.О.13).

4. 3. Объем дисциплины и виды учебной работы

Объем дисциплины «Физика» составляет 5 зачетных единицы (ЗЕТ), 180 академических часа (далее часов). Дисциплина изучается в 1 и 2 семестрах.

5. 3.1. Распределение объема дисциплины по видам учебной работы

<u>_</u>	, , , , , , , , , , , , , , , , , , ,
Вид учебной работы	Количество часов
Контактная работа (Всего)	95
В том числе:	
Лекции (Л)	36
Лабораторные занятия (ЛЗ)	54
Контроль самостоятельной работы (КСР)	5
Самостоятельная работа обучающихся (СР)	58
Контроль	27
Итого	180

4 Содержание дисциплины

Раздел 1. Механика

Материя. Движение.

Вещество. Поле. Виды взаимодействий. Формы движения материи.

Кинематика механического движения.

Система отсчета и система координат. Радиус-вектор. Траектория. Путь. Перемещение. Средняя скорость. Мгновенная скорость. Ускорение. Центростремительное, тангенциальное и полное ускорения. Угол поворота. Средняя угловая скорость. Мгновенная угловая скорость. Среднее угловое ускорение. Мгновенное угловое ускорение.

Динамика механического движения.

Законы Ньютона. Масса. Плотность. Сила. Импульс. Закон сохранения импульса. Основное уравнение динамики поступательного движения. Момент импульса. Момент инерции. Момент силы. Плечо силы. Основное уравнение вращательного движения.

Энергетика механического движения.

Кинетическая энергия. Потенциальная энергия. Полная механическая энергия. Закон сохранения полной механической энергии. Работа постоянной силы. Мощность.

Механические колебания и волны.

Периодические колебания. Гармонические колебания. Уравнение гармонических колебаний. Смещение. Частота. Период. Амплитуда и фаза. Пружинный маятник. Уравнение движения пружинного маятника. Частота и период колебаний пружинного маятника. Физический и математический маятники. Уравнения движения физического и математического маятников. Частота и период колебаний физического и математического маятников. Механические волны. Длина волны. Скорость волны. Частота. Интенсивность. Типы волн и их уравнения. Звук. Диапазон звуковых волн. Слышимый звук. Ультразвук. Инфразвук.

Элементы механики жидкостей.

Давление. Закон Паскаля. Закон Архимеда. Уравнения неразрывности потока. Уравнение Бернулли. Вязкость (внутреннее трение). Число Рейнольдса. Методы определения вязкости

Раздел 2. Молекулярная физика и термодинамика

Основы молекулярной физики.

Идеальный газ. Основные уравнения молекулярно-кинетической теории газа. Количество вещества. Молярная масса. Уравнение состояния идеального газа. Средняя энергия молекулы. Число степеней свободы молекулы. Абсолютная температура. Постоянная Больцмана. Уравнение Менделеева — Клапейрона. Основные положения молекулярно-кинетической теории и их экспериментальные доказательства. Диффузия. Закон Фика. Средние скорости.

Молекулярные явления в газах.

Изохорический процесс. Изобарический процесс. Изотермический процесс. Адиабатический процесс.

Молекулярные явления в жидкостях.

Межмолекулярное взаимодействие. Поверхностный слой в жидкостях и поверхностное натяжение. Коэффициент поверхностного натяжения. Явление капиллярности. Закон Борелли-Жюрена. Вязкость. Закон Ньютона.

Молекулярные явления в твердых телах.

Молекулярное взаимодействие. Кристаллические и аморфные твердые тела. Деформация, ее виды и типы. Закон Гука. Модуль упругости как характеристика свойств твердого тела.

Изменение агрегатного состояния вещества.

Понятие о фазовых превращениях и диаграмме состояний вещества. Реальный газ. Уравнение Ван-дер-Ваальса. Опыт Эндрюса. Критическая температура. Сжижение газов. Опыт Джоуля — Томсона. Процессы превращения веществ: испарение, конденсация, кипение, плавление, кристаллизация, возгонка.

Основы термодинамики.

Термодинамическая система. Типы термодинамических систем: изолированная, закрытая, открытая. Термодинамические параметры. Термодинамическое состояние системы: равновесное, стационарное. Термодинамический процесс: обратимый, необратимый. Внутренняя энергия идеального газа. Изменение внутренней энергии. Виды теплообмена: теплопроводность, конвекция, излучение электромагнитных волн, испарение.

Законы термодинамики. Первое начало термодинамики. Энтропия идеального газа. Второе начало термодинамики. Тепловые машины. Коэффициент полезного действия тепловой машины.

Раздел 3 Электричество и электромагнетизм

Электрическое поле в вакууме.

Элементарный электрический заряд. Закон сохранения заряда. Взаимодействие двух точечных зарядов. Сила взаимодействия. Закон Кулона. Напряженность электрического поля и принцип суперпозиции для напряженности. Потенциал электрического поля и принцип суперпозиции для потенциала. Работа при перемещении заряда в постоянном электрическом поле.

Вещество в электрическом поле.

Диэлектрики в электрическом поле. Полярные, неполярные и ионные диэлектрики. Поляризация диэлектрика: электронная, ориентационная, ионная. Поляризованность. Диэлектрическая проницаемость среды. Сегнетоэлектрики. Точка Кюри. Проводники в электрическом поле. Электростатическая индукция. Конденсаторы. Электроемкость конденсатора. Энергия заряженного конденсатора. Энергия электрического поля в плоском конденсаторе.

Постоянный электрический ток.

Электрический ток. Постоянный электрический ток. Условия существования электрического тока. Сила электрического тока. Плотность электрического тока. Закон Ома для участка цепи. Работа и мощность электрического тока. Закон Джоуля —Ленца. Закон Ома для неоднородного участка цепи. Электрический ток в металлах, электролитах, газах, полупроводниках.

Постоянное магнитное поле в вакууме и веществе.

Магнитное поле. Магнитная индукция. Силовые линии магнитного поля. Сила

Ампера. Взаимодействие токов. Магнитный момент. Магнитный поток. Напряженность магнитного поля. Природа магнетизма. Диамагнетики. Парамагнетики. Ферромагнетики. Намагниченность.

Движение заряженных частиц в магнитном и электрическом поле.

Сила Лоренца. Движение заряженной частицы в однородном и постоянном магнитном и электрическом поле. Движение вдоль силовой линии. Движение по окружности. Движение по винтовой линии.

Электромагнитная индукция и переменный электрический ток.

Закон Фарадея и правило Ленца. Электродвижущая сила индукции. Самоиндукция. Электродвижущая сила самоиндукции. Индуктивность контура. Переменный Генератор электрический ток. переменного электрического тока. Действующие (эффективные) значения силы тока и напряжения. Активное, индуктивное, емкостное сопротивление в цепи переменного тока. Импеданс. Работа и мощность переменного тока.

Электромагнитное поле.

Колебательный контур, состоящий из конденсатора и катушки индуктивности. Частота колебаний. Формула Томсона. Энергия колебательного контура. Электромагнитные волны.

Раздел 4. Оптика

Геометрическая оптика.

Природа света. Световой луч. Законы прямолинейного распространения света. Абсолютный показатель преломления. Относительный показатель преломления. Законы отражения и преломления света. Микроскопия.

Электромагнитная теория природы оптического излучения.

Свет. Квантово-волновой дуализм. Внутренние процессы, приводящие к излучению и поглощению веществом света. Дисперсия. Дисперсионный спектр. Нормальная и аномальная дисперсия. Виды спектров. Спектральный анализ. Спектрометрия. Поглощение (абсорбция) света. Закон Бугера. Закон Бугера – Бера.

Основы волновой оптики.

Интерференция. Сложение волн и колебаний. Амплитуда суммы двух гармонических колебаний. Когерентность. Интерференция света от двух точечных источников. Интерференционная картина. Интерференция света в тонких пленках. Интерферометры.

Дифракция. Принцип Гюйгенса-Френеля. Дифракция света на щели. Дифракционная решетка как спектральный прибор. Волны де Бройля. Формулы де Бройля. Дифракция электронов и нейтронов в кристаллах. Поляризация света. Естественный, поляризованный и частично поляризованный свет. Степень поляризации. Закон Малюса. Поляриметрия.

Основы квантовой оптики.

Тепловое излучение и его характеристики. Закон Кирхгофа. Закон Стефана—Больцмана. Закон смещения Вина. Формула Планка. Фотоны. Импульс и энергия фотона. Фотоэффект. Вольтамперная характеристика вакуумного фотоэлемента. Законы внешнего фотоэффекта. Люминесценция. Типы и виды люминесценции. Люминесцентный анализ. Закон Стокса

Раздел 5. Физика атома и атомного ядра

Основы атомной физики.

Модели строения атома. Постулаты Бора: условие квантования орбит, условие стационарности, условие частот. Скорость электрона и радиус орбиты электрона. Энергетические уровни.

Теория атома водорода.

Атом водорода в квантовой механике. Формула Бальмера — Ридберга. Серии излучения атома водорода. Квантовые числа: главное, орбитальное, магнитное, спиновое. Правила отбора. Принцип Паули. Периодическая система элементов Менделеева.

Основы физика атомного ядра и элементарных частиц.

Состав и характеристики атомных ядер. Самопроизвольный распад частицы. Условие самопроизвольного распада. Радиоактивность. Закон радиоактивного распада. Ядерные реакции. Элементы дозиметрии. Элементарные частицы.