МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ВЕТЕРИНАРНОЙ МЕДИЦИНЫ

Кафедра Естественнонаучных дисциплин

Аннотация рабочей программы дисциплины

Б1.О.10 ХИМИЯ

Направление подготовки 35.03.08 Водные биоресурсы и аквакультура

Профиль: Рыбоводство пресноводное

Уровень высшего образования — **бакалавриат** Квалификация — **бакалавр**

Форма обучения - очная

1. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП

1.1. Цель и задачи дисциплины

Бакалавр по направлению подготовки 35.03.08 Водные биоресурсы и аквакультура должен быть подготовлен к решению задач профессиональной деятельности следующих типов: производственно – технологической и научно-исследовательский деятельности.

Цель дисциплины: освоение обучающимися теоретических знаний, приобретение умений и навыков в области химии, в соответствии с формируемыми компетенциями.

Задачи дисциплины включают:

- -изучение свойств важнейших классов неорганических и органических соединений во взаимосвязи с их строением; закономерности протекания химических процессов;
- -обеспечение выполнения студентами лабораторного практикума, иллюстрирующего сущность дисциплины «Химия»;
- формирование практических навыков в подготовке, организации, выполнении химического лабораторного эксперимента, включая использование современных приборов и оборудования, в том числе привить практические навыки, значимые для будущей профессиональной деятельности;
- формирование навыков грамотного и рационального оформления выполненных экспериментальных работ, обработки результатов эксперимента; навыки работы с учебной, монографической, справочной химической литературой.

1.2.Компетенции и индикаторы их достижений

ОПК – 1 Способен решать типовые задачи профессиональной деятельности на основе знаний основных законов математических, естественнонаучных и общепрофессиональных дисциплин с применением информационно-коммуникационных технологий

Код и наименование индикатора достижения компетенции		Формируемые ЗУН	
ИД – 1. ОПК - 1 Решает типовые задачи профессиональной	знания	Обучающийся должен знать методы решения типовых задач на основе знаний основных законов химии с применением информационно-коммуникационных технологий (Б1.О.09, ОПК-1-3.1)	
деятельности на основе знаний основных законов математических,	умени я	Обучающийся должен уметь решать типовые задачи на основе знаний основных законов химии с применением информационно-коммуникационных технологий (Б1.О.09, ОПК-1-У.1)	
естественнонаучных дисциплин с применением информационно-коммуникационных технологий	навык и	Обучающийся должен владеть навыками использования основных законов химии при решении типовых задач с применением информационно-коммуникационных технологий (Б1.О.09, ОПК-1-H.1)	

2. Место дисциплины в структуре ОПОП

Дисциплина «Химия» относится к обязательной части основной профессиональной образовательной программы бакалавриата.

3. Объём дисциплины и виды учебной работы

Объем дисциплины составляет 6 зачетных единиц (ЗЕТ), 216 академических часов (далее часов). Дисциплина изучается в 1,2 семестрах.

3.1. Распределение объема дисциплины по видам учебной работы

Вид учебной работы	Количество часов
Контактная работа (всего)	99
В том числе:	
Лекции (Л)	36
Лабораторные занятия (ЛЗ)	54
Контроль самостоятельной работы (КСР)	9
Самостоятельная работа обучающихся (СР)	90
Контроль	27 Экзамен, зачет
Итого	216

4. Содержание дисциплины

Раздел 1. Общая химия

Роль и значение химии в современном обществе. Определение предмета химии. Содержание, цели и задачи курса.

Основные понятия и законы химии. Простые и сложные вещества. Основные законы (стехиометрия) и понятия химии: атом, молекула, моль, относительная атомная и молекулярная масса, постоянная Авогадро. Законы сохранения массы и энергии, постоянства состава, Авогадро. Единицы количества вещества: моль, химический эквивалент. Закон эквивалентов. Классы неорганических соединений (оксиды, кислоты, основания, соли)

Строение атома. Строение электронных оболочек атомов. Квантово-механическое представление о строении электронных оболочек атомов. Корпускулярно-волновой дуализм элементарных частиц. Квантово-механическая модель атома водорода. Квантовые числа. s-, p-, d-, f — элементы. Электронные конфигурации атомов. Принцип минимальной энергии. Принцип Паули. Правило Хунда. Правила Клечковского.

Периодический закон Д.И. Менделеева и периодическая система элементов. Причина периодичности изменения свойств элементов на основании данных о строении электронных оболочек атомов.

Химическая связь. Квантово-механические представления о возможности возникновения химической связи между атомами. Характеристики химической связи: длина связи, энергия связи, валентный угол. Основные положения метода валентных связей (ВС).

Общая характеристика растворов и их классификация. Способы выражения количественного состава растворов. Массовая доля, молярная концентрация и малярная

концентрация эквивалентов растворов. Коэффициент растворимости. Взаимные пересчеты концентрации растворов.

Электролитическая диссоциация. Роль растворителя. Механизм диссоциации электролитов с ионными и полярными ковалентными связями.

Ионное произведение воды. Концентрация ионов водорода в воде и в водных растворах кислот и оснований. Водородный показатель (рН).

Гидролиз солей. Различные случаи гидролиза солей. Степень гидролиза. Влияние температуры, концентрации раствора и природы соли на степень гидролиза. Смещение равновесия гидролиза. Необратимый гидролиз

Сущность окислительно-восстановительных реакций. Окислительно-восстановительные свойства веществ. Методы составления уравнений окислительно-восстановительных реакций: метод электронного баланса и электронно-ионный метод. Типы окислительно-восстановительных реакций. Влияние среды на протекание окислительно-восстановительных реакций. Расчет эквивалентов окислителей и восстановителей. Основные окислители и восстановители.

Скорость химической реакции и методы ее регулирования. Средняя и истинная скорость реакции. Закон действующих масс. Константа скорости, ее физический смысл, независимость от концентрации или давления реагирующих веществ. Понятие о молекулярности и порядке реакции. Реакции первого и второго порядка. Период полупревращения, взаимосвязь с исходной концентрацией реагентов. Влияние температуры на константу скорости химической реакции. Эмпирическое правило Вант-Гоффа. Уравнение Аррениуса для константы скорости реакции. Энергия активации, ее физический смысл. Химическое равновесие. Принцип Ле Шателье. Катализ. Гомогенный и ферментативный катализ; автокатализ. Адсорбция и гетерогенный катализ. Механизм действия катализаторов.

Комплексы, теория и правило Вернера. Природа связи в комплексных соединениях. Способность атомов различных элементов к комплексообразованию. Классификация и номенклатура комплексов.

Химия . s-, p-, d- элементов.

Раздел 2. Аналитическая химия

Аналитическая химия, как наука о методах химического анализа, определения состава и структуры химических систем. Качественный, количественный, структурный, системный анализы. Химическая идентификация.

Гравиметрический анализ. Принцип метода. Виды весового анализа. Основные этапы проведения анализа. Вычисления по результатам анализа

Титриметрический анализ, основные понятия и определения. Стандартный раствор (титрант), первичный и вторичный стандартные растворы, стандартизация, титрование, точка эквивалентности. Титрование, его виды: прямое, реверсивное, обратное, заместительное.

Методы титриметрического анализа: кислотно-основной, осаждения, окислениявосстановления, комплексообразования.

Инструментальные методы анализа, их классификация и основные характеристики. Фотоколориметрия. Потенциометрия. Хроматография.

Раздел 3. Углеводороды

Предмет и задачи органической химии. Классификация органических соединений. Теоретические основы органической химии: теория строения органических веществ А.М. Бутлерова; изомерия, электронное строение атома углерода и типы гибридизации, виды химических связей в органических веществах, типы и механизмы реакций.

Алканы: определение, гомологический ряд, виды изомерии, номенклатура, способы получения, химические свойства.

Алкены: определение, гомологический ряд, виды изомерии, номенклатура, способы получения, химические свойства.

Алкины: определение, гомологический ряд, виды изомерии, номенклатура, способы получения, химические свойства.

Алициклические углеводороды, классификация. Циклоалканы: определение, классификация, виды изомерии, конформации, способы получения, химические свойства, применение.

Полимеры: определение, классификация, строение, свойства, синтез полимеров, значение в хозяйственной деятельности человека.

Алкадиены: определение, номенклатура, виды изомерии, способы получения, химические свойства.

Арены: определение, классификация, виды изомерии, способы получения, химические свойства (правило ориентации).

Раздел 4. Производные углеводородов

Галогенопроизводные углеводородов: определение, классификация, виды изомерии, способы получения, химические свойства.

Спирты: определение, классификация, виды изомерии, электронное строение гидроксильной группы, способы получения, химические свойства.

Фенолы: определение, классификация, виды изомерии, способы получения, химические свойства.

Альдегиды и кетоны: определение, классификация, виды изомерии, электронное строение карбонильной группы, способы получения, химические свойства.

Карбоновые кислоты: определение, классификация, виды изомерии, электронное строение карбоксильной группы, способы получения, химические свойства.

Оксикислоты: определение, классификация, виды изомерии, способы получения, химические свойства.

Сложные эфиры: классификация, биологическая роль, способы получения, химические свойства.

Амины. Определение, классификация, виды изомерии, способы получения, электронное строение аминогруппы, химические свойства

Гетероциклические соединения: классификация, формулы представителей, основные химические свойства, биологическая роль.